
Applying a Case-Based Reasoning System Development Tool in the Design of BDI Agents

339

Applying a Case-Based Reasoning System Development Tool in the Design of BDI

Agents

Ken Yen-Ru Cheng, Chiung-Hon Leon Lee*, Alan Liu

Department of Electrical Engineering and Center for Telecommunication Research

National Chung Cheng University
*Department of Computer Science and Information Engineering,

Nanhua Universiti

Taiwan

d95415007@ccu.edu.tw, leonlee@dragon.ccut.edu.tw, aliu@ccu.edu.tw

Abstract

Most deliberative agents are designed based on the

BDI architecture. Although the BDI architecture is uncom-

plicated and its decision process is easy to understand and

execute the BDI architecture is difficult to implement and

has no functionality of learning. Extending the architecture

of BDI with CBR to develop the deliberative agent could

make the development of agent easier compared to

implementing a pure BDI architecture with the func-

tionality of learning and adaptation. In this paper, we

develop a domain-independent system development tool,

JCBRDT. By using JCBRDT, the system developers could

use CBR to develop a BDI agent, create a CBR system

easily, and save the time on designing and maintaining the

CBR system.

Keywords: agent, BDI, CBR, development tool.

1 Introduction

An agent is one kind of software programs with func-

tionality of replying the events from the environment, do-

ing some active behaviors according its goals, interacting

with other agents or human beings, and achieving the cur-

rent goal according the per-experiment. A deliberative

agent means that agent whose behaviors are based on a

reasoning system [8]. For deliberative agents, many system

architectures are brought up. Many of these architectures

are based on the Belief-Desire-Intention (BDI) architecture.

Under the BDI architecture, an agent’s behaviors are com-

posed of three psychological properties: beliefs, desires

and intentions [2]. The term, "Beliefs", means the informa-

tion that the agents presume about itself and environment,

"Desires" the states that the agents want to reach, and "In-

tentions" the steps describing how to arrive at the desired

states from the current states. An intention could be repre-

sented by a series of actions and these actions could be

regarded as a plan.

Although the BDI architecture is straightforward and

its decision process is very easy to be realized and accom-

plished, it is difficult to find an efficient way to implement

it as a system. Rao and Georgeff [2] point out two prob-

lems about BDI architecture: (1) the powerful logicality of

BDI architecture may not achieve full implementation; (2)

this kind of agent has some difficulties to have the func-

tionality of learning.

To solve these problems, some researchers use Case-

Based Reasoning (CBR) to export BDI architecture to de-

velop the deliberative agents [9, 11]. A CBR approach

helps an agent to learn and adapt instantaneously and work

well without recompile the program code when the envi-

ronment changes. By connecting the three properties of

BDI agents with the information reasoned with CBR, the

system developer could build agents with the capabilities

of believes, desires, intention, and learning.

In this paper, we describe our Java Case-Based Rea-

soning Development Tool, JCBRDT. By using this devel-

opment tool, the system developer can expand the devel-

opment of agent with CBR capability and develop a CBR

system easily. JCBRDT is a domain-independent system

development tool. The CBR systems which are designed

by the system developer himself are usually used in one

specific domain. JCBRDT, however, could be used to de-

velop different domains by changing the content of XML

files to switch the applied domain and save the system de-

velopers' time to design and maintain these CBR systems.

The following section starts from reviewing related work,

and the section three states our approach. Section 4 de-

scribes the implementation of our system, and the last sec-

tion presents a brief conclusion.

2 Literature Review

JCBRDT is mainly expanded from jCOLIBRI [6] and

provides a new solution to the weakness of jCOLIBRI. In

this section, we introduce the concept of the design of

jCOLIBRI and then describe the semantic similarity used

in JCBRDT.

Journal of Internet Technology Volume 9 (2008) No.4

340

2.1 Concepts of jCOLIBRI

jCOLIBRI proposes a domain-independent architec-

ture to help the system developer to design a CBR system

and add the CBR ontology into the design process of CBR

system. CBR Ontology is an ontology constructed by the

terminology, reasoning process, and description and acqui-

sition of cases.

jCOLIBRI creates the following four XML files after

the design process:

� Tasks and Methods: the solutions of each task;

� Case Base: the type and data contain source of case

base;

� Case: the structure of case and

� Problem Solving Methods: the solution of problem.

CBR system plans the case structure and methods ac-

cording the information above.

2.2 Semantic Similarity

The issue of similarity is important in CBR process.

We focus on the concept of semantic similarity, which is a

subject of how to let computers or machines to understand

the language of human kind. The development of WordNet

[5] helps the study of semantics. The term classification

that developed by WordNet researchers could save the time

to develop a word ontology. Most systems use the term

classification of WordNet to calculate the semantic similar-

ity.

WordNet is a word system constructed with the con-

cept of psychology and it is also an English dictionary

based on semantic concepts. There are four categorizations

in its terms: noun, verb, adjective, and adverb and the rela-

tions of these terms are separated into four parts: syno-

nym/antonym, hypernym/hyponym, holonym and mero-

nym.

The algorithms using WordNet to calculate the simi-

larity usually use Information Content (IC) to be the index

of the specific degree of the concept. Resnik [14] uses IC

to calculate similarity and he uses the common parent con-

cept to measure the similarity between two concepts. This

common parent concept is called Most Specific Common

Abstraction (MSCA). The similarity degree is zero when

MSCA is zero. Jiang and Conrath [7] extend Resnik's

method and consider the edge distance between two con-

cepts simultaneously. Seco et al. [13] use the hyponyms in

WordNet to evaluate the value of IC.

3 Research Approaches

CBR systems have aided many researchers in various

domains [10]. However, there are only few researches dis-

cussing about the CBR system generator. That urges us to

create a domain independent CBR system development

tool. This development tool could be used in varied do-

mains and save system developers' time to develop and

maintain CBR system.

3.1 Method to Shorten the Similarity Calculating Time

Because of the capability of learning, a CBR system

stores more and more cases as time passes. More cases

means that more time needed to search the most similar

case in a case base. To shorten the similarity calculating

time, we use the following calculating formula to measure

the similarity of two cases.

)2(:_

)1(:__

1

1

1

∑

∑

∑

=

=

=

×
=

=

N

k

k

N

k

kk

ASV

N

k

k

ASV

w

simw

simAgerageWeighted

N

sim

simAgerageWeightNo

Where ASV
sim (Average Similarity Value) is the

whole similarity of two cases, k
sim is the similarity of

the kth characteristic of two cases with the value between 0

and 1, N is the amount of the characteristics of a case,

and k
w is the weight of kth characteristic.

The purpose of case retrieval is to find a case that has

the highest similarity with the description of user's problem.

Using this property, we could shorten the similarity calcu-

lation time. When finding the sum of characteristic simi-

larities of retrieved case could not be higher than the whole

similarity of the found case that presently has highest

similarity, the next calculation should be omitted. That

means the retrieving process needs less time if it finds a

high similarity earlier.

Using an example to illustrate our method, assume

that ASVP
sim (Previous Average Similarity Value) is the

highest similarity in the case retrieving process; ASVC
sim

(Current Average Similarity Value) is the similarity of the

case that is considered currently; Ck
sim is the similarity of

the kth characteristic of the case that is considered cur-

rently. Suppose that ASVP
sim is 0.95 and N is 5. First, mul-

tiply ASVP
sim by N, that is 5, and the result is 4.75. After

that subtract 1 from this result and the new result is 0.75

called the first result. Second, if the first result is larger

than 1C
sim , ASVP

sim would be greater than ASVC
sim ac-

cording to the counting result (a) in List 1. We could ter-

minate the calculating sequence for the current case.

On the contrary, if the first result is not larger than

1C
sim , add the first result, 0.75, with 1 and the new result is

1.75 called the second result. If the second result is larger

than the addition of 1C
sim and 2C

sim , that means ASVP
sim

Applying a Case-Based Reasoning System Development Tool in the Design of BDI Agents

341

would be greater than ASVC
sim according the counting

result (b) in List 1, then we could terminate calculating

sequence for current case. Continue this calculating process

until finishing the calculation of 5C
sim . From this example,

we know that some calculating steps could be omitted if a

case which has higher similarity is found earlier.

3.2 Measurement of Similarity

In JCBRDT, we use object, distance, string and se-

mantic similarity comparing functions as the comparison

functions for case similarity. Different data types have dif-

ferent similarity comparison function. The data types are

Integer, Double, Boolean, String, and Word. We show the

relationship between data type and similarity comparison

functions in Figure 1. The left part represents the data type

which can be provided to the system designers and the

right part represents the similarity comparison functions.

The data type Integer is either Interval or Equal; Double is

either Interval or Equal; Boolean could only use Equal;

String is either MaxString or Equal; Word is Equal or

WNSimilarity. The purpose for the relationship between

data type and similarity comparison function is to avoid the

error in calculating process of similarity comparison func-

tion.

3.2.1 Object Similarity Function

An object similarity function compares two values as

objects. The comparison method is to compare these two

objects if they are equal or not and the result is 0 or 1. The

mathematical formula is as follows:

3.2.2 Distance Similarity Function

Distance similarity function calculates the distance

Figure 1 Concept Diagram of Relationship between Data Types and

Similarity Functions

)3(
0

1
),(

21

21

21

⎩
⎨
⎧

≠
=

=
ObjectObjectif

ObjectObjectif
ObjectObjectsim

between two values and changes this distance to a similar-

ity value. The maximum interval between these two values

should also be known to calculate the value of similarity.

The mathematical formula is

1),(
21

21

Interval
Max

DoubleDouble
DoubleDoublesim

−
−= (4)

1
Double represents the data type of the first value

with a type, "Double" and 2
Double represents the data

type of the second value and is also "Double". The differ-

ence between 1
Double and 2

Double is calculated as

the absolute value of subtracting 1
Double from

2
Double . Interval

Max is the maximum interval between

1
Double and 2

Double .

3.2.3 String Similarity Function

MaxString is a method based on longest common

substring algorithm. The value of similarity is to find the

maximum common string length in two string and then

divide by the maximum string length of two string.

3.2.4 Semantic Similarity Function

Information Content (IC) is a technique in information

theory to measure semantic similarity between two words.

The following formula calculates an IC value in WordNet

[13]:

)log(max

)1)(log(
1

wn

wn

chypo
ic

+−= (5)

Where)(chypo is the number of hyponym of c;

wn
max is a constant and represents the maximum amount

of concept categorization. The semantic similarity formula

is

ASVCASVP

ASVC

CCCCC

CCCC

CCCC

CCC

CCC

CC

CCC

C

ASVP

simsim

sim

simsimsimsimsim

simsimsimsim

simsimsimsim

simsimsim

bsimsimsim

simsim

asimsimsim

simIF

THENsimIF

>⇒

×=
++++≥

++++>+=⇒

+++≥
+++>+=⇒

++≥
++>+=⇒

+≥+>+=⇒

>
=+−⇒

=×=

5

1175.375.4

1175.275.3

)(

1175.175.2

)(1175.075.1

75.0

75.01575.4

75.4595.095.0

54321

4321

4321

321

321

21

211

1

L

L

List 1 Similarity Calculating Process

)log(max

)1),((log(
1),(21

21'

wn

res

ccMSCAhypo
ccsim

+−= (6)

2

),(2)()(
1),(21'21

21 ⎟
⎠

⎞
⎜
⎝

⎛ −+−= ccsimciccic
ccsim

reswnwn

jcn
(7)

Journal of Internet Technology Volume 9 (2008) No.4

342

Where),(
21
ccMSCA is Most Specific Common Abstrac-

tion of 1
c and 2

c .

From the experimental data in [15], we find out that

the similarity of nouns and verbs are better than the simi-

larity of adjectives and adverbs because that the amount of

nouns and verbs are larger than the amount of adjectives

and adverbs, and each noun or verb always has a hypernym

and hyponym. Nouns and verbs are better than adjectives

and adverbs to be the characteristic of a class.

3.3 Case Adaptation Methods

JCBRDT uses Jess [4,12] to modify the cases. There

are three parts in Jess Rule of JCBRDT:

1. Knowledge Base: the methods about loading the

needed domain knowledge;

2. Initial Value: the methods about retrieving the similar

cases and the description part in question.

3. Rule: the method about adapting cases.

From these three parts, system developer could use

the adapting knowledge built by Protégé [1].

3.4 XML in JCBRDT

JCBRDT defines three XML Schemas: Case Structure,

Case Base and Connector. These XML Schemas are Java

objects mapped by XML binding techniques. JCBRDT use

these XML Schemas to produce a domain dependent XML

files which contain the needed information about a CBR

system, such as the title and data type of characteristics,

and the similarity function.

3.4.1 Case Structure

XML Schema in Case Structure [3] defines the struc-

ture of a case as shown in Figure 2. There are two parts in

case structure: Description Part and Solution Part. The at-

tribute, CaseSim, in the Description Part represents the-

whole similarity of a case. Because different user require-

ments need different similarity functions, system develop-

ers can extend the class and design the similarity function.

The attribute, DPAttribute, represents a characteristic of

each case. The attribute, AttributeSim, has the similarity

function of each characteristic. The attribute, Name, is the

title of characteristics, Type the data type of characteristics,

and Weight the weightiness of characteristics. The Solution

Figure 2 Case Structure

Part is the same with the Description Part without Local-

Sim and Weight because it does not need to calculate simi-

larity.

3.4.2 Case Base

The purpose of Case Base XML Schema is to create a

mapped case base object as shown in Figure 3. JCBRDT

maps the content of Text or XML files into the related Java

object. The CBR system can only access the data in mem-

ory and does not open/close the Text or XML files at every

moment. It will increase the executing speed of CBR sys-

tem.

3.4.3 Connector

JCBRDT supports four types of case base: MySQL,

Text, XML and ConnectorClass, as shown in Figure 4. The

ConnectorClass case base represents the case base created

by Java objects directly. The MySQL case base storing

cases in hard drive has large capacity but slow accessing

speed. Text, XML and ConnectoClass case bases storing

cases in memory have fast accessing speed but small ca-

pacity. The cases in Text case base are easier to be modi-

fied, added and deleted than the ones in XML case base.

However, the cases in Text case do not have error checking

and correction since they lack a case content structure. The

cases in XML case base could be verified after the modifi-

cation, addition or deletion. The ConnectorClass method is

more independent and needs fewer resources because it

does not need an external system or file to store cases.

However, it needs system developers to create every case

into case base with Java programming. It will increase the

developing load of system developers and maintain loading

of case base, and it could not save the new cases in the

executing process of system.

JCBRDT stores the case base connecting method into

the Connector XML Schema file. From this file, the system

Figure 3 Case Base

Figure 4 Connector

Applying a Case-Based Reasoning System Development Tool in the Design of BDI Agents

343

developer will know the connecting method and modify

this if needed.

4 Implementation

The system architecture is described in this section

and explained by an example. The comparison with other

development tool is also shown in this section.

4.1 System Architecture

There are two main sub-systems in JCBRDT: CBR

Frame Generation (CBRFG) and CBR Core (CBRCore).

The functionality of CBRFG is letting system developer

use a graphical interface to setup related data about CBR

system: case structure, case base storing method and rule

adaptation method. The graphical interface is based on the

functions provided by CBRCore. The purpose of CBRFG

is creating a required system of system developer by using

simple operations. The CBR application created by

CBRFG is a shell and the CBRCore is its reasoning kernel

which contains components needed in CBR life cycle.

4.2 Example: Pizza Recommendation System

We use a pizza recommendation system to explain the

utilization of JCBRDT. A system developer uses JCBRDT

to create a pizza recommendation system which recom-

mends what kind of pizza is suitable for the consumer who

enters the personal information about his interests. We use

an ontology about pizza modified from the pizza case study

in Protégé [1].

The JCBRDT process to create a pizza recommenda-

tion system is shown in Figure 5. First, a system developer

checks if there is any pizza recommendation system in

JCBRDT. If the answer is “no”, the system developer uses

CBRFG to design a pizza recommendation system. By

executing the functions, “Set Case Structure”, “Set Case

Figure 5 Activity Diagram of Creating Pizza Recommendation System

Base Source” and “Set Case Adapt Rule”, CBRFG creates

three objects, “Case Structure Information”, “Case Base

Source” and “Case Adapt Rule”. CBRFG completes the

method “Generate CBR Source Code” and creates a pizza

recommendation system. Second, a consumer interacts

with this system and inputs a problem description about

pizza. This problem description fires an event in CBRCore.

CBRCore retrieves the most similar case to the consumer’s

problem description in the case base and adapts it to a

suitable solution. Finally, the consumer receives this solu-

tion from the pizza recommendation system.

The execution result of the pizza recommendation

system is shown in Figure 6. A consumer input his personal

information: his name is Henry_Yang; his sex is male; his

age is 18; his occupation is student; he is not an vegetari-

anism; his degree of spiciness is mild and his negative top-

ping is TomatoTopping. The retrieved most similar case is

that the name is Herry_Teng; the sex is male; the age is 30;

the occupation is sailor; the man who is not a vegetarian-

ism; the degree of spiciness is mild and the negative top-

ping is TomatoTopping. The recommended pizza is

American.

In Figure 7 we see that the toppings in the original

case are TomatoTopping, PeperoniSausageTopping and

MozzarellaTopping and the toppings in the adapted solu-

tion are PeperoniSausageTopping and MozzarellaTopping.

Because TomatoTopping is the consumer’s negative top-

ping, it was deleted from the original case by the pizza

recommendation system.

4.3 Comparison with Other Tool

The CBR system created by jCOLIBRI only retrieves

the most similar case, and it is a null adaptation; JCBRDT

uses Jess for case adaptation and it is a rule adaptation.

JCBRDT uses Protégé to create adaptation knowledge

bases and let the solution part of cases match system de-

velopers’ requests. Users or other systems can directly use

the solution from CBR systems built by JCBRDT.

Figure 6 The Result of Pizza Recommendation System

Journal of Internet Technology Volume 9 (2008) No.4

344

Table 1 Systems Comparison Chart

 Systems

Items
JCBRDT jCOLIBRI

Using XML to represent

CBR system informa-

tion

Yes Yes

Adapting cases auto-

matically
Yes No

Using Ontology to as-

sist case adaption
Yes No

Sources of case base
XML,

MySQL, Text

MySQL,

Text

Supporting semantic

similarity functions
Yes No

For the source of case base, JCBRDT provides a XML

case base. The reason of using XML is to enhance the

drawback of Text. A Text case base is easy to be used and

has a high speed in adding cases, but it is difficult to mod-

ify the content of cases.

Semantic similarity functions in JCBRDT let system

developers add semantic characteristics in cases. For ex-

ample, system developers can semantic similarity function

to compare the semantic similarity between “student” and

“author”. The systems comparison chart is shown in Table

1.

5 Conclusions

Our research shows that a domain independent CBR

system development tool is feasible. There is a common

view in CBR executing process but there are different

views in CBR techniques for different application domains.

Let us consider some directions for the future of JCBRDT.

First, a CBR system could be used in many domains, but

the similarity functions provided by the current JCBRDT

could not satisfy all of system developers' needs. It is our

goal to apply JCBRDT to more application domains to gain

experiences in designing more similarity functions. Second,

for case structure, JCBRDT constructs a case with a de-

scription part, a solution part and characteristics, but some

system developers need a more complex case structure.

Providing a method to let system developers to define case

Figure 7 The Adapted Solution in Pizza Recommendation System

structure themselves will be a good function to add. Third,

JCBRDT provides only one method in case retrieval and

adaptation. There are other methods, such as using index

and hierarchy to shorten the case retrieval time. CBRDT

will provide more methods about case retrieval and adapta-

tion for system developers to choose the most suitable

method by their own requests.

Acknowledgement

This research was partially supported by the Ministry

of Economic Affairs under the grant No. 96-EC-17-A-02-

S1-029 and the National Science Council under the grants

No. 97-2752-E-008-001-PAE and 97-2221-E-194-048-MY3.

References

[1] A. Rector, N. Drummond, M. Horridge, J. Rogers, H.

Knublauch, R. Stevens, H. Wang and C. Wroe, OWL

Pizzas: Practical Experience of Teaching OWL-DL:

Common Errors & Common Patterns, 14th Interna-

tional Conference on Knowledge Engineering and

Knowledge Management, Whittlebury Hall, UK, 2004,

pp. 63-81.

[2] A. S. Rao and M. P. Georgeff, BDI Agents: From

Theory to Practice, First International Conference on

Multi-Agent Systems, San Franciso, USA, 1995, pp.

312-319.

[3] A. Sanchez, J. A. Recio, B. Diaz-Agudo and P. Gon-

zalez-Calero, Case Structures in jCOLIBRI, Twenty-

fith SGAI Int. Conf. on Innovative Techniques and

Applications of Artificial Intelligence, Cambridge,

UK, 2005.

[4] E. F. Hill, Jess in Action: Rule-Based Systems in Java,

Manning Publications, 2003.

[5] G. A. Miller, WordNet : A Lexical Database for Eng-

lish, Communications of the ACM, Vol. 38, 1995, pp.

39-41.

[6] J. A. R. Garcia, A. Sanchez, B. Diaz-Agudo and P. A.

Gonzalez-Calero, jCOLIBRI 1.0 in a nutshell. A soft-

ware tool for designing CBR systems, Proccedings of

the 10th UK Workshop on Case Based Reasoning,

2005, pp. 20-28.

[7] J. J. Jiang and D. W. Conrath, Semantic similarity

based on corpus statistics and lexical taxonomy, Pro-

ceedings of International Conference Research on

Computational Linguistics, Taiwan, 1997, pp. 19-33.

[8] J. M. Corchado and M. A. Pellicer, Development of

CBR-BDI Agents, International Journal of Computer

Science & Applications, Vol. 2, No. 1, 2005, pp.

25-32.

Applying a Case-Based Reasoning System Development Tool in the Design of BDI Agents

345

[9] J. M. Corchado and R. Laza, Constructing Deliberative

Agents with Case-based Reasoning Technology, In-

ternational Journal of Intelligent Systems, Vol. 18, No.

12, 2003, pp. 1227-1241.

[10] J. M. Corchado, J. Pavon, E. Corchado and L. F. Cas-

tillo, Development of CBR-BDI Agents: A Tourist

Guide Application, 7th European Conference on Case-

based Reasoning, 2004, pp. 547-559.

[11] M. Glez-Bedia and J. M. Corchado, A Planning

Strategy Based on Variational Calculus for Delibera-

tive Agents,” Computing and Information Systems

Journal, Vol. 10, No. 1, 2002, pp. 2-14.

[12] M. Menken, Jess Tutorial, Vrije Universiteit,

Amsterdam, The Netherlands, 2002, pp. 1-57.

[13] N. Seco, T. Veale and J. Hayes, An Intrinsic Informa-

tion Content Metric for Semantic Similarity in Word-

Net, Proceedings of the 16th European Conference on

Artificial Intelligence, 2004, pp. 1089-1090.

[14] P. Resnik, Using Information Content to Evaluate

Semantic Similarity in a Taxonomy, Proceedings of

the 14th International Joint Conference on Artificial

Intelligence, 1995, pp. 448-453.

[15] P. Zhang, The Research and Implementation of Se-

mantic Based Web Services Discovery, Knowledge

Engineering Group, Tsinghua University, 2005, pp.

36-45.

Biographies

Ken Yen-Ru Cheng received the BS

degree in Electrical Engineering from

the Tatung Institute of Technology in

1994 and the MS degree in Electrical

Engineering from the National Chung

Cheng University in Taiwan in 1996.

He is a Ph.D. student in the Electrical

Engineering Department at National Chung Cheng Univer-

sity. His research interests are artificial intelligence, soft-

ware engineering, intelligent agents, requirements engi-

neering, and embedded software engineering.

Chiung-Hon Leon Lee received the

Ph.D. degree in Electronic Engineering

from the National Chung Cheng

University in Taiwan in 2006. He is an

assistant professor at Department of

Computer Science and Information

Engineering, Nanhua University, Taiwan.

His research interests are in agent-based software

engineering, Web services, knowledge representation, and

fuzzy time series.

Alan Liu received the Ph.D. degree in

Electrical Engineering and Computer

Science from the University of Illinois

at Chicago in 1994. He is a professor at

Department of Electrical Engineering,

National Chung Cheng University in

Taiwan. His research interests in artifi-

cial intelligence and software engineering include knowl-

edge acquisition, requirements analysis, intelligent agents,

and applications in embedded systems and robotic systems.

He is also a member of IEEE, ACM, and TAAI.

