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Abstract 
 

Most deliberative agents are designed based on the 

BDI architecture. Although the BDI architecture is uncom-

plicated and its decision process is easy to understand and 

execute the BDI architecture is difficult to implement and 

has no functionality of learning. Extending the architecture 

of BDI with CBR to develop the deliberative agent could 

make the development of agent easier compared to 

implementing a pure BDI architecture with the func-

tionality of learning and adaptation. In this paper, we 

develop a domain-independent system development tool, 

JCBRDT. By using JCBRDT, the system developers could 

use CBR to develop a BDI agent, create a CBR system 

easily, and save the time on designing and maintaining the 

CBR system. 
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1 Introduction 
 

An agent is one kind of software programs with func-

tionality of replying the events from the environment, do-

ing some active behaviors according its goals, interacting 

with other agents or human beings, and achieving the cur-

rent goal according the per-experiment. A deliberative 

agent means that agent whose behaviors are based on a 

reasoning system [8]. For deliberative agents, many system 

architectures are brought up. Many of these architectures 

are based on the Belief-Desire-Intention (BDI) architecture. 

Under the BDI architecture, an agent’s behaviors are com-

posed of three psychological properties: beliefs, desires 

and intentions [2]. The term, "Beliefs", means the informa-

tion that the agents presume about itself and environment, 

"Desires" the states that the agents want to reach, and "In-

tentions" the steps describing how to arrive at the desired 

states from the current states. An intention could be repre-

sented by a series of actions and these actions could be 

regarded as a plan. 

Although the BDI architecture is straightforward and 

its decision process is very easy to be realized and accom-

plished, it is difficult to find an efficient way to implement 

it as a system. Rao and Georgeff [2] point out two prob-

lems about BDI architecture: (1) the powerful logicality of 

BDI architecture may not achieve full implementation; (2) 

this kind of agent has some difficulties to have the func-

tionality of learning.  

To solve these problems, some researchers use Case- 

Based Reasoning (CBR) to export BDI architecture to de-

velop the deliberative agents [9, 11]. A CBR approach 

helps an agent to learn and adapt instantaneously and work 

well without recompile the program code when the envi-

ronment changes. By connecting the three properties of 

BDI agents with the information reasoned with CBR, the 

system developer could build agents with the capabilities 

of believes, desires, intention, and learning. 

In this paper, we describe our Java Case-Based Rea-

soning Development Tool, JCBRDT. By using this devel-

opment tool, the system developer can expand the devel-

opment of agent with CBR capability and develop a CBR 

system easily. JCBRDT is a domain-independent system 

development tool. The CBR systems which are designed 

by the system developer himself are usually used in one 

specific domain. JCBRDT, however, could be used to de-

velop different domains by changing the content of XML 

files to switch the applied domain and save the system de-

velopers' time to design and maintain these CBR systems. 

The following section starts from reviewing related work, 

and the section three states our approach. Section 4 de-

scribes the implementation of our system, and the last sec-

tion presents a brief conclusion. 

 

2 Literature Review 
 

JCBRDT is mainly expanded from jCOLIBRI [6] and 

provides a new solution to the weakness of jCOLIBRI. In 

this section, we introduce the concept of the design of 

jCOLIBRI and then describe the semantic similarity used 

in JCBRDT. 
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2.1 Concepts of jCOLIBRI 

jCOLIBRI proposes a domain-independent architec-

ture to help the system developer to design a CBR system 

and add the CBR ontology into the design process of CBR 

system. CBR Ontology is an ontology constructed by the 

terminology, reasoning process, and description and acqui-

sition of cases. 

jCOLIBRI creates the following four XML files after 

the design process: 

� Tasks and Methods: the solutions of each task; 

� Case Base: the type and data contain source of case 

base;  

� Case: the structure of case and 

� Problem Solving Methods: the solution of problem. 

CBR system plans the case structure and methods ac-

cording the information above. 

 

2.2 Semantic Similarity 

The issue of similarity is important in CBR process. 

We focus on the concept of semantic similarity, which is a 

subject of how to let computers or machines to understand 

the language of human kind. The development of WordNet 

[5] helps the study of semantics. The term classification 

that developed by WordNet researchers could save the time 

to develop a word ontology. Most systems use the term 

classification of WordNet to calculate the semantic similar-

ity. 

WordNet is a word system constructed with the con-

cept of psychology and it is also an English dictionary 

based on semantic concepts. There are four categorizations 

in its terms: noun, verb, adjective, and adverb and the rela-

tions of these terms are separated into four parts: syno-

nym/antonym, hypernym/hyponym, holonym and mero-

nym. 

The algorithms using WordNet to calculate the simi-

larity usually use Information Content (IC) to be the index 

of the specific degree of the concept. Resnik [14] uses IC 

to calculate similarity and he uses the common parent con-

cept to measure the similarity between two concepts. This 

common parent concept is called Most Specific Common 

Abstraction (MSCA). The similarity degree is zero when 

MSCA is zero. Jiang and Conrath [7] extend Resnik's 

method and consider the edge distance between two con-

cepts simultaneously. Seco et al. [13] use the hyponyms in 

WordNet to evaluate the value of IC. 

 

3 Research Approaches 
 

CBR systems have aided many researchers in various 

domains [10]. However, there are only few researches dis-

cussing about the CBR system generator. That urges us to 

create a domain independent CBR system development 

tool. This development tool could be used in varied do-

mains and save system developers' time to develop and 

maintain CBR system. 

 

3.1 Method to Shorten the Similarity Calculating Time 

Because of the capability of learning, a CBR system 

stores more and more cases as time passes. More cases 

means that more time needed to search the most similar 

case in a case base. To shorten the similarity calculating 

time, we use the following calculating formula to measure 

the similarity of two cases. 
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Where ASV
sim  (Average Similarity Value) is the 

whole similarity of two cases, k
sim  is the similarity of 

the kth characteristic of two cases with the value between 0 

and 1, N  is the amount of the characteristics of a case, 

and k
w  is the weight of kth characteristic. 

The purpose of case retrieval is to find a case that has 

the highest similarity with the description of user's problem. 

Using this property, we could shorten the similarity calcu-

lation time. When finding the sum of characteristic simi-

larities of retrieved case could not be higher than the whole 

similarity of the found case that presently has highest 

similarity, the next calculation should be omitted. That 

means the retrieving process needs less time if it finds a 

high similarity earlier. 

Using an example to illustrate our method, assume 

that ASVP
sim  (Previous Average Similarity Value) is the 

highest similarity in the case retrieving process; ASVC
sim  

(Current Average Similarity Value) is the similarity of the 

case that is considered currently; Ck
sim  is the similarity of 

the kth characteristic of the case that is considered cur-

rently. Suppose that ASVP
sim  is 0.95 and N is 5. First, mul-

tiply ASVP
sim  by N, that is 5, and the result is 4.75. After 

that subtract 1 from this result and the new result is 0.75 

called the first result. Second, if the first result is larger 

than 1C
sim , ASVP

sim  would be greater than ASVC
sim  ac-

cording to the counting result (a) in List 1. We could ter-

minate the calculating sequence for the current case. 

On the contrary, if the first result is not larger than 

1C
sim , add the first result, 0.75, with 1 and the new result is 

1.75 called the second result. If the second result is larger 

than the addition of 1C
sim  and 2C

sim , that means ASVP
sim  
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would be greater than ASVC
sim  according the counting 

result (b) in List 1, then we could terminate calculating 

sequence for current case. Continue this calculating process 

until finishing the calculation of 5C
sim . From this example, 

we know that some calculating steps could be omitted if a 

case which has higher similarity is found earlier. 

 

3.2 Measurement of Similarity 

In JCBRDT, we use object, distance, string and se-

mantic similarity comparing functions as the comparison 

functions for case similarity. Different data types have dif-

ferent similarity comparison function. The data types are 

Integer, Double, Boolean, String, and Word. We show the 

relationship between data type and similarity comparison 

functions in Figure 1. The left part represents the data type 

which can be provided to the system designers and the 

right part represents the similarity comparison functions. 

The data type Integer is either Interval or Equal; Double is 

either Interval or Equal; Boolean could only use Equal; 

String is either MaxString or Equal; Word is Equal or 

WNSimilarity. The purpose for the relationship between 

data type and similarity comparison function is to avoid the 

error in calculating process of similarity comparison func-

tion. 

3.2.1 Object Similarity Function 

An object similarity function compares two values as 

objects. The comparison method is to compare these two 

objects if they are equal or not and the result is 0 or 1. The 

mathematical formula is as follows: 

3.2.2 Distance Similarity Function 

Distance similarity function calculates the distance 

 

 

Figure 1 Concept Diagram of Relationship between Data Types and 

Similarity Functions 
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between two values and changes this distance to a similar-

ity value. The maximum interval between these two values 

should also be known to calculate the value of similarity. 

The mathematical formula is 

1),(
21

21

Interval
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DoubleDouble
DoubleDoublesim

−
−=     (4) 

1
Double  represents the data type of the first value 

with a type, "Double" and 2
Double  represents the data 

type of the second value and is also "Double". The differ-

ence between 1
Double  and 2

Double  is calculated as 

the absolute value of subtracting 1
Double  from 

2
Double . Interval

Max  is the maximum interval between 

1
Double  and 2

Double . 

3.2.3 String Similarity Function 

MaxString is a method based on longest common 

substring algorithm. The value of similarity is to find the 

maximum common string length in two string and then 

divide by the maximum string length of two string. 

3.2.4 Semantic Similarity Function 

Information Content (IC) is a technique in information 

theory to measure semantic similarity between two words. 

The following formula calculates an IC value in WordNet 

[13]: 
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Where )(chypo  is the number of hyponym of c; 

wn
max  is a constant and represents the maximum amount 

of concept categorization. The semantic similarity formula 

is 
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List 1 Similarity Calculating Process 
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Where ),(
21
ccMSCA  is Most Specific Common Abstrac-

tion of 1
c  and 2

c . 

From the experimental data in [15], we find out that 

the similarity of nouns and verbs are better than the simi-

larity of adjectives and adverbs because that the amount of 

nouns and verbs are larger than the amount of adjectives 

and adverbs, and each noun or verb always has a hypernym 

and hyponym. Nouns and verbs are better than adjectives 

and adverbs to be the characteristic of a class. 

 

3.3 Case Adaptation Methods 

JCBRDT uses Jess [4,12] to modify the cases. There 

are three parts in Jess Rule of JCBRDT: 

1. Knowledge Base: the methods about loading the 

needed domain knowledge; 

2. Initial Value: the methods about retrieving the similar 

cases and the description part in question. 

3. Rule: the method about adapting cases. 

From these three parts, system developer could use 

the adapting knowledge built by Protégé [1]. 

 

3.4 XML in JCBRDT 

JCBRDT defines three XML Schemas: Case Structure, 

Case Base and Connector. These XML Schemas are Java 

objects mapped by XML binding techniques. JCBRDT use 

these XML Schemas to produce a domain dependent XML 

files which contain the needed information about a CBR 

system, such as the title and data type of characteristics, 

and the similarity function. 

3.4.1 Case Structure 

XML Schema in Case Structure [3] defines the struc-

ture of a case as shown in Figure 2. There are two parts in 

case structure: Description Part and Solution Part. The at-

tribute, CaseSim, in the Description Part represents the-

whole similarity of a case. Because different user require- 

ments need different similarity functions, system develop-

ers can extend the class and design the similarity function. 

The attribute, DPAttribute, represents a characteristic of 

each case. The attribute, AttributeSim, has the similarity 

function of each characteristic. The attribute, Name, is the 

title of characteristics, Type the data type of characteristics, 

and Weight the weightiness of characteristics. The Solution 

 

 
 

Figure 2 Case Structure 

Part is the same with the Description Part without Local-

Sim and Weight because it does not need to calculate simi-

larity. 

3.4.2 Case Base 

The purpose of Case Base XML Schema is to create a 

mapped case base object as shown in Figure 3. JCBRDT 

maps the content of Text or XML files into the related Java 

object. The CBR system can only access the data in mem-

ory and does not open/close the Text or XML files at every 

moment. It will increase the executing speed of CBR sys-

tem. 

3.4.3 Connector 

JCBRDT supports four types of case base: MySQL, 

Text, XML and ConnectorClass, as shown in Figure 4. The 

ConnectorClass case base represents the case base created 

by Java objects directly. The MySQL case base storing 

cases in hard drive has large capacity but slow accessing 

speed. Text, XML and ConnectoClass case bases storing 

cases in memory have fast accessing speed but small ca-

pacity. The cases in Text case base are easier to be modi-

fied, added and deleted than the ones in XML case base. 

However, the cases in Text case do not have error checking 

and correction since they lack a case content structure. The 

cases in XML case base could be verified after the modifi-

cation, addition or deletion. The ConnectorClass method is 

more independent and needs fewer resources because it 

does not need an external system or file to store cases. 

However, it needs system developers to create every case 

into case base with Java programming. It will increase the 

developing load of system developers and maintain loading 

of case base, and it could not save the new cases in the 

executing process of system. 

JCBRDT stores the case base connecting method into 

the Connector XML Schema file. From this file, the system 

 

Figure 3 Case Base 

 

 

 

Figure 4 Connector 
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developer will know the connecting method and modify 

this if needed. 

 

4 Implementation 
 

The system architecture is described in this section 

and explained by an example. The comparison with other 

development tool is also shown in this section. 

 

4.1 System Architecture 

There are two main sub-systems in JCBRDT: CBR 

Frame Generation (CBRFG) and CBR Core (CBRCore). 

The functionality of CBRFG is letting system developer 

use a graphical interface to setup related data about CBR 

system: case structure, case base storing method and rule 

adaptation method. The graphical interface is based on the 

functions provided by CBRCore. The purpose of CBRFG 

is creating a required system of system developer by using 

simple operations. The CBR application created by 

CBRFG is a shell and the CBRCore is its reasoning kernel 

which contains components needed in CBR life cycle. 

 

4.2 Example: Pizza Recommendation System 

We use a pizza recommendation system to explain the 

utilization of JCBRDT. A system developer uses JCBRDT 

to create a pizza recommendation system which recom-

mends what kind of pizza is suitable for the consumer who 

enters the personal information about his interests. We use 

an ontology about pizza modified from the pizza case study 

in Protégé [1]. 

The JCBRDT process to create a pizza recommenda-

tion system is shown in Figure 5. First, a system developer 

checks if there is any pizza recommendation system in 

JCBRDT. If the answer is “no”, the system developer uses 

CBRFG to design a pizza recommendation system. By 

executing the functions, “Set Case Structure”, “Set Case 

 

Figure 5 Activity Diagram of Creating Pizza Recommendation System 

Base Source” and “Set Case Adapt Rule”, CBRFG creates 

three objects, “Case Structure Information”, “Case Base 

Source” and “Case Adapt Rule”. CBRFG completes the 

method “Generate CBR Source Code” and creates a pizza 

recommendation system. Second, a consumer interacts 

with this system and inputs a problem description about 

pizza. This problem description fires an event in CBRCore. 

CBRCore retrieves the most similar case to the consumer’s 

problem description in the case base and adapts it to a 

suitable solution. Finally, the consumer receives this solu-

tion from the pizza recommendation system. 

The execution result of the pizza recommendation 

system is shown in Figure 6. A consumer input his personal 

information: his name is Henry_Yang; his sex is male; his 

age is 18; his occupation is student; he is not an vegetari-

anism; his degree of spiciness is mild and his negative top-

ping is TomatoTopping. The retrieved most similar case is 

that the name is Herry_Teng; the sex is male; the age is 30; 

the occupation is sailor; the man who is not a vegetarian-

ism; the degree of spiciness is mild and the negative top-

ping is TomatoTopping. The recommended pizza is 

American. 

In Figure 7 we see that the toppings in the original 

case are TomatoTopping, PeperoniSausageTopping and 

MozzarellaTopping and the toppings in the adapted solu-

tion are PeperoniSausageTopping and MozzarellaTopping. 

Because TomatoTopping is the consumer’s negative top-

ping, it was deleted from the original case by the pizza 

recommendation system. 

 

4.3 Comparison with Other Tool 

The CBR system created by jCOLIBRI only retrieves 

the most similar case, and it is a null adaptation; JCBRDT 

uses Jess for case adaptation and it is a rule adaptation. 

JCBRDT uses Protégé to create adaptation knowledge 

bases and let the solution part of cases match system de-

velopers’ requests. Users or other systems can directly use 

the solution from CBR systems built by JCBRDT. 

 

 

Figure 6 The Result of Pizza Recommendation System 
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Table 1 Systems Comparison Chart 

         Systems 

Items 
JCBRDT jCOLIBRI 

Using XML to represent 

CBR system informa-

tion 

Yes Yes 

Adapting cases auto-

matically 
Yes No 

Using Ontology to as-

sist case adaption 
Yes No 

Sources of case base 
XML, 

MySQL, Text 

MySQL, 

Text 

Supporting semantic 

similarity functions 
Yes No 

 

For the source of case base, JCBRDT provides a XML 

case base. The reason of using XML is to enhance the 

drawback of Text. A Text case base is easy to be used and 

has a high speed in adding cases, but it is difficult to mod-

ify the content of cases. 

Semantic similarity functions in JCBRDT let system 

developers add semantic characteristics in cases. For ex-

ample, system developers can semantic similarity function 

to compare the semantic similarity between “student” and 

“author”. The systems comparison chart is shown in Table 

1. 

 

5 Conclusions 
 

Our research shows that a domain independent CBR 

system development tool is feasible. There is a common 

view in CBR executing process but there are different 

views in CBR techniques for different application domains. 

Let us consider some directions for the future of JCBRDT. 

First, a CBR system could be used in many domains, but 

the similarity functions provided by the current JCBRDT 

could not satisfy all of system developers' needs. It is our 

goal to apply JCBRDT to more application domains to gain 

experiences in designing more similarity functions. Second, 

for case structure, JCBRDT constructs a case with a de-

scription part, a solution part and characteristics, but some 

system developers need a more complex case structure. 

Providing a method to let system developers to define case 

 

 

 

Figure 7 The Adapted Solution in Pizza Recommendation System 

structure themselves will be a good function to add. Third, 

JCBRDT provides only one method in case retrieval and 

adaptation. There are other methods, such as using index 

and hierarchy to shorten the case retrieval time. CBRDT 

will provide more methods about case retrieval and adapta-

tion for system developers to choose the most suitable 

method by their own requests. 
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